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Outl ine

• Kasabonika Lake First Nation (KLFN) community 
microgrid data collection

• Energy Management Systems (EMS) overview
• EMS models:

• Deterministic
• Uncertainty management:

• Stochastic programming
• Robust optimization
• Affine arithmetic

• Conclusions
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KLFN Microgrid Data Col lect ion
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KLFN Microgrid Data Col lect ion 

• Community:
• Approximately 900 people.
• 500 km north of Thunder 

Bay.
• Winter-road access.

• Electricity generation:
• 0.4 MW, 0.6MW, and 1 MW 

diesel generator in 
operation.

• 1.6 MW diesel generator 
planned.

• 3x 10 kW Bergey WTs.
• 1x 30 kW Wenvor WT.
• 10 kW solar PV array.
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Airport

Diesel generators
400kW, 600kW & 1MW 

Wind turbines
1x 30kW Wenvor
3x 10kW Bergey

Town

25+2 fuel storage tanks
50,000 liter tanks



KLFN Microgrid Data Col lect ion
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Local grid dataloggers:
1. Diesel generator plant.
2. 3x Bergey WTs.
3. Store.
4. Water treatment plant.

Dent meters:
5. Sewage plant.
6. School.
7. Police station.
8. Nursing station.
9. Wenvor WT.

Laptop dataloggers:
10. 13 Houses across the 

community.
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KLFN Microgrid Data Col lect ion

• Data summary:
• Dataloggers collected 

information for
approximately one year.

• Some information missing 
but a representative 
sample for all locations 
has been collected.
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KLFN Microgrid Data Col lect ion
Diesel generator plant
RN1 Channel 1 - Lower load
Timeframe: Jun/14 - Oct/14

50th

Value Value

% 
w.r.t. 
50th 
per.

Value

% 
w.r.t. 
50th 
per.

Value

% 
w.r.t. 
50th 
per.

Value

% 
w.r.t. 
50th 
per.

Value

% 
w.r.t. 
50th 
per.

Value

% 
w.r.t. 
50th 
per.

Active Power_A+B+C kW 458.41    206.32 -55.0% 231.29 -49.5% 327.44 -28.6% 527.86 15.1% 622.19 35.7% 678.74 48.1%
Reactive Power_A+B+C kVAR 78.69       36.34    -53.8% 43.59   -44.6% 56.42    -28.3% 91.87    16.8% 105.38 33.9% 115.17 46.4%
Voltage_A_RMS V 605.09    598.09 -1.2% 599.96 -0.8% 602.76 -0.4% 607.48 0.4% 611.87 1.1% 620.35 2.5%
Voltage_B_RMS V 600.01    593.97 -1.0% 596.18 -0.6% 598.44 -0.3% 601.88 0.3% 605.84 1.0% 614.22 2.4%
Voltage_C_RMS V 593.58    587.05 -1.1% 588.31 -0.9% 591.48 -0.4% 596.43 0.5% 599.41 1.0% 603.06 1.6%
Frequency_A Hz 60.06    59.94    -0.2% 59.97   -0.1% 60.01    -0.1% 60.09    0.1% 60.12    0.1% 60.15    0.1%
Total power factor - 0.99      0.97      -1.1% 0.98      -0.7% 0.98      -0.3% 0.99      0.2% 0.99      0.5% 0.99      0.6%
Current A RMS A 172.50 71.86    -58.3% 84.64   -50.9% 128.19 -25.7% 213.44 23.7% 290.10 68.2% 333.92 93.6%
Current B RMS A 333.07    147.19 -55.8% 172.97 -48.1% 235.89 -29.2% 387.92 16.5% 453.70 36.2% 501.62 50.6%
Current C RMS A 247.14    109.47 -55.7% 127.18 -48.5% 181.32 -26.6% 298.45 20.8% 369.60 49.6% 409.64 65.8%
Voltage Imbalance (neg seq) V 1.58         0.75      -52.8% 0.88      -44.1% 1.20      -24.2% 2.03      28.7% 2.65      67.7% 3.15      99.5%
Voltage Imbalance (zero seq) V 0.00         0.00      -76.3% 0.00      -59.4% 0.00      -31.2% 0.00      15.7% 0.00      44.5% 0.00      51.9%
Current Imbalance (neg seq) A 18.70       3.56      -81.0% 5.98      -68.0% 12.35    -34.0% 22.39    19.7% 26.97    44.2% 30.26    61.8%
Current Imbalance (zero seq) A 20.74       5.88      -71.6% 7.79      -62.4% 13.86    -33.2% 24.54    18.3% 29.36    41.6% 32.96    58.9%
Voltage_A_FFT_THD - 1.74         1.14      -34.5% 1.31      -24.4% 1.50      -13.7% 2.07      19.1% 3.02      73.8% 3.28      88.6%
Voltage_B_FFT_THD - 1.75         1.11      -36.5% 1.28      -27.2% 1.47      -16.0% 2.05      17.2% 2.73      55.9% 2.94      67.5%
Voltage_C_FFT_THD - 1.40         0.94      -32.5% 1.09      -22.0% 1.27      -9.0% 1.60      14.5% 2.50      78.4% 2.77      98.1%
Current_A_FFT_THD - 7.49         4.46      -40.5% 5.11      -31.7% 6.31      -15.7% 9.19      22.7% 11.55    54.3% 12.96    73.1%
Current_B_FFT_THD - 5.63         3.06      -45.7% 3.66      -35.0% 4.65      -17.4% 6.97      23.7% 9.07      61.1% 10.33    83.5%
Current_C_FFT_THD - 5.25         3.10      -40.9% 3.54      -32.6% 4.44      -15.3% 6.12      16.5% 7.37      40.5% 8.38      59.8%

Percetile

Description Units

1st 5th 95th 99th25th 75th
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Energy Management Systems (EMS) 
Overview

• IEEE PES TF in Microgrid Control, “Trends in Microgrid Control,” IEEE Transactions on Smart Grid, vol. 6, no. 4, 
July 2014, pp. 1905-1919:
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EMS Overview
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EMS Overview

• EMS objectives: 
• Find the optimal or near optimal unit commitment of units.
• Find the optimal or near optimal dispatch of units. 
• Find the optimal or near optimal voltage settings. 

• Challenges for EMS in microgrids:
• Intermittent and hard to predict generation.
• System states are coupled in time due to Unit Commitment  

(UC) decisions and Energy Storage Systems (ESS).
• Multiple objectives (e.g. total cost, GHG emissions)
• Multiple owners and sometimes conflicting objectives. 

Microgrid Symposium, Niagara Falls, Oct. 20, 201611



EMS Determinist ic Model
• D. Olivares, C. A. Cañizares, and M. Kazerani, “A Centralized Energy 

Management System for Isolated Microgrids,” IEEE Transactions on 
Smart Grid, vol. 6, no. 4, July 2014, pp. 1864-1875:

• Objective: 
• Minimize fuel, start-up and shut-down costs, plus load shedding high costs if an 

option (simple DSM program).
• Constraints:

• Network equations using abc impedance matrix models for lines/cables plus KVL and 
KCL equations, with network current and voltage limits.

• ZI load models per-phase.
• Synchronous and induction generator models based on dq0 steady state 

representation.
• DER with VSC interface modeled as current injection model with limits and losses.
• Energy storage models based on using a simplified book-keeping model for the 

State-Of-Charge (SOC), plus hydrogen-tank constraints for hydrogen storage.
• Minimum up- and down-times, ram-up and -down limits, and a reserve constraint.

• A Model Predictive Control (MPC) approach is used.
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EMS Determinist ic Model I
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• Decoupled approach:
• UC and Economic Load Dispatch 

(ELD) performed with different 
update rates.

• Two different resolutions and 
horizons of forecast.

• Multi-stage ELD to optimize ESS 
operation. 

• Delivers UC decisions and 
operating points to DERs (power 
output of DG, output/input of 
ESS, shiftable/shedable loads 
commands, etc.). 

• Detailed 3-phase model to 
represent unbalanced conditions 
typical of microgrids (distribution 
networks).



EMS Determinist ic Model I  Example
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EMS Determinist ic Model I  Example
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EMS Determinist ic Model I I
• Microgrid EMS (MEMS) 

considers:
• Residential controllable loads.
• Unit Commitment (UC) for 

Distributed Energy Resources 
(DERs) and power flow 
constraints simultaneously.

• A Neural Network (NN) based 
Residential Controllable Lod 
Porfile Estimator (RCLPE) is 
used to determine smart load 
models.

• MPC is used to account for 
uncertainties associated with 
renewables and electricity 
demand.
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• B. V. Solanki, A. Raghurajan, K. 
Bhattacharya, and C. A. Cañizares, “Including 
Smart Loads for Optimal Demand Response 
in Integrated Energy Management Systems 
for Isolated Microgrids,” IEEE Transactions on 
Smart Grid, accepted November 2015, 10 
pages:



EMS Determinist ic Model I I  Example
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DR
control

[%]

Objective
function

[$]

Energy served
by ESS
[kWh]

Energy
curtailed

[kWh]

Load
factor

Peak
demand

[kW]

0 83,781 3,037 528 0.580 7,575

20 62,447 2,870 351 0.589 7,431

40 42,464 2,808 185 0.6 7,287

60 25,099 2,760 41 0.611 7,141

100 19,941 2,416 0 0.631 6,851



EMS Determinist ic Model I I  Example
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Uncertainty Model ing in UC

• Uncertainty in the UC can be addressed in three ways:
• Wait-and-see (deterministic with MPC/RCH models): 

• Close tracking of the problem with small time steps, solving the 
dispatch problem using the most current information, and including 
an explicit reserve requirement. 

• Assumes that point forecasts are accurate and the system natural 
reserve can handle the mismatches, otherwise shed load. 
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Uncertainty Model ing in UC

• Stochastic optimization: 
• Minimize the expected cost over a discrete representation of the 

uncertainty, leading to large-scale problems. 
• Accounts directly for the stochastic characteristic of  wind power, 

improving the ability of the system to perform corrective actions 
without load shedding.

• First stage variables provide probabilistic guarantee on the 
feasibility of all second stage expected outcomes.
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Uncertainty Model ing in UC

• Intervals (robust and AA-based optimization): 
• Does not require any probabilistic modeling. 
• Determines a solution that guaranties feasibility for any realization 

within the bounds of the uncertainty set. 
• Bounds can be given or calculated based on historical forecasts. 
• Uncertainty sets are able to relate the risk preference of the 

operator with the choice of the uncertainty set, incorporating 
probabilistic information if available.  
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SUC EMS
• D. Olivares, J. D. Lara, C. A. Cañizares, and M. Kazerani, “Stochastic-Predictive Energy Management System 

for Isolated Microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, November 2015, pp. 2681- 2693:
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SUC EMS Example

• For the previous microgrid test system, the following 
study cases allow to validate and compare the SUC 
approach against the MPC+RCH deterministic 
approach:
• Available storage capacity (B250, B500). 
• Scenario generation approach (historic and statistic 

ensembles).
• Length of the SUC look-ahead window (8-hour and 12 hour) .
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SUC EMS Example
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• Cases with increased ESS capacity 
show a reduction of costs, due to a 
reduction in the use of diesel units.

• The Historical Data case shows the 
effect of a pessimistic 
representation of the uncertainty, 
yielding more conservative results 
with higher operation costs due to 
over commitment. 

• Reduced look-ahead windows show 
poor performance in terms of 
operation costs, but without 
shedding load. 

• The loss of load indices show that 
higher levels of ESS capacity yield 
lower values, thus improving the 
reliability of the system. 



RUC EMS

• Proposed in Jose Lara’s Sept. 2014 MASc thesis: 
“Robust Energy Management Systems for Isolated 
Microgrids Under Uncertainty”;  paper in IEEE TSG is 
under review.

• The UC problem is modified to include storage, and 
consider the SOC of batteries at t = t +1 as first stage 
variables, thus using the ESS as hedging. 

• The objective is to obtain the least-cost uncertainty-
aware solution for the first-stage (UC) variables, given a 
bounded uncertainty set.
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RUC EMS Example
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• The microgrid test is based again on 
the CIGRE MV benchmark system 
and features 3 diesel units with 
capacities of 1750 kW, 310 kW and 
800 kW. 

• The two larger diesel units replace 
the connection to the main grid.

• The system's total capacity is 6,400 
kW.

• The RUC load is modeled as 
constant power and balanced.

• In the three-phase OPF the load is 
unbalanced with a combination of 
constant impedance and constant 
power.



RUC EMS Example
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• The commitment results 
for different uncertainty 
policies show the changes 
in the level of 
conservatism.

• The RUC formulation 
commits more capacity 
than the deterministic 
case between hours 12 to 
24. 

• The effect of the extra 
commitment are reflected 
in the reserve levels. 



Aff ine Ari thmetic

• Enhanced interval model for self validated numerical 
computing, in which system variables are modeled as affine 
forms of some “primitive” variables:

• It keeps track of correlations between output and input quantities.
• Resolves the Interval Arithmetic (IA) dependency problem and 

results in narrower intervals; for example, for interval [𝑥𝑥 , 𝑥̅𝑥] :
• IA: �𝑥𝑥 − �𝑥𝑥 = [ 𝑥𝑥 − 𝑥̅𝑥 , 𝑥̅𝑥 − 𝑥𝑥 ]
• AA: �𝑥𝑥 − �𝑥𝑥 = 0

• Significantly more efficient than IA.
• Affine representation of an uncertain variable:

�𝑥𝑥 = 𝑥𝑥0 + 𝑥𝑥1𝜀𝜀1 + 𝑥𝑥2𝜀𝜀2 + ⋯+ 𝑥𝑥𝑛𝑛𝜀𝜀𝑛𝑛
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AA-based OPF
• M. Pirnia, C. A. Cañizares, K. Bhattacharya, and A. Vaccaro, “An Affine Arithmetic Approach for Microgrid 

Dispatch with Variable Generation and Load,” Proc. Power Systems Computation Conference, August 2014, 7 
pages:
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AA-based OPF Example
• AA-based OPF is 

implemented and solved in 
GAMS for a similar isolated 
test microgrid test as before, 
based on the CIGRE MV 
benchmark system.

• The intermittency of wind 
and solar generation is 
assumed to be managed 
with thermal generation via 
continuous regulation. 

• Results are compared with 
MCS, assuming uniform 
distribution.
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AA-based OPF Example
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AA-based OPF Example
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Conclusions

• Various EMS models for isolated microgrids have been 
developed, based on decoupling the problem in sequential 
MILP UC and NLP OPF problems, with different horizons 
and update rates.

• UC: 
• MPC: 

• Easiest to implement.
• Adequate performance.
• Results on lowest reserves but highest possible load shifting/shedding 

due to forecasts errors.
• Stochastic programming: 

• More complex to implement but manageable.
• Adequate performance if not “too many” scenarios.
• Requires p.d.f. assumptions and proper selection of scenarios.
• Results in more reserves and little load shifting/shedding.
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Conclusions

• Robust optimization: 
• Even more complex to implement.
• Adequate performance.
• Does not require p.d.f. and user may define desired risk level 

through a budget of uncertainty Γ, which can be associated with 
intervals.

• Reserves and load shifting/shedding depend on Γ value.
• AA (in the works): 

• Most complex implementation.
• Performance and accuracy still to be determined.
• Does not require p.d.f. and user may define desired risk levels 

through intervals.
• Reserves and load shifting/shedding depend on chosen intervals.  
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Conclusions

• OPF: 
• RHC: 

• Relatively easy to implement.
• Good performance.
• Requires occasional UC revisions, which depend on system stress 

conditions.
• AA: 

• There are 3 possible implementation approaches, with different 
levels of complexity and accuracy.

• Performance depends on implementation.
• Need for UC revisions should be less, depending on intervals 

chosen.
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Conclusions

• The classical UC model has been implemented in 
Hatch’s microgrid controller.

• The feasibility of embedding the OPF in a controller is 
still to be determined, but some preliminary studies 
have been carried out; however, studies to determine 
whether there is a need for modeling feeders are 
showing that OPF may not be necessary with an 
appropriate representation of unbalancing and voltage 
dependent loads in the UC.
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